Rabin8 Protein Interacts with GTPase Rheb and Inhibits Phosphorylation of Ser235/Ser236 in Small Ribosomal Subunit Protein S6
نویسندگان
چکیده
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that in association with Raptor, mLST8, PRAS40 and Deptor forms a complex (mTORC1) playing the key role in the regulation of protein biosynthesis, transcription, cellular metabolism, apoptosis and autophagy; mainly via direct phosphorylation of S6 kinases. mTORC1 is activated by growth factors and amino acids via the activation of Rheb GTPase. In the current study, we demonstrate for the first time that the over-expression of Rabin8, which functions as a guanine nucleotide exchange factor for Rab8 GTPase, suppresses phosphorylation of Ser235/Ser236 in ribosomal protein S6. Downregulation of Rabin8 using small interfering RNA (siRNA) increases the phosphorylation of Ser235/Ser236 in ribosomal protein S6. Furthermore, Rabin8 can be immunoprecipitated with Rheb GTPase. These results suggest the existence of a novel mechanism of mTORС1 regulation and its downstream processes. Since Rabin8 is a known regulator of ciliogenesis, a potential link can exist between regulation of Rheb/mTORC1 and ciliogenesis.
منابع مشابه
Rabin8 Protein Interacts with GTPase Rheb and Inhibits Phosphorylation of Ser235/Ser236 in Small Ribosomal Subunit
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that in association with Raptor, mLST8, PRAS40 and Deptor forms a complex (mTORC1) playing the key role in the regulation of protein biosynthesis, transcription, cellular metabolism, apoptosis and autophagy; mainly via direct phosphorylation of S6 kinases. mTORC1 is activated by growth factors and amino acids via the activati...
متن کاملTuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein...
متن کاملBiochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
Tuberous sclerosis complex (TSC) is a genetic disease caused by a mutation in either the tsc1 or tsc2 tumor suppressor gene. Recent studies have demonstrated that TSC2 displays GAP (GTPase-activating protein) activity specifically towards the small G protein Rheb and inhibits its ability to stimulate the mTOR signaling pathway. Rheb and TSC2 comprise a unique pair of GTPase and GAP, because Rhe...
متن کاملEstrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain.
Inhibitors of the mammalian target of rapamycin (mTOR) are currently in clinical trials for the treatment of breast cancer. The mechanisms through which mTOR are activated in breast cancer and the relationship of mTOR activation to steroid hormones, such as estrogen, that are known to influence breast cancer pathogenesis, are not yet understood. Using MCF-7 cells as a model, we found that 17-be...
متن کاملFission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.
Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. ...
متن کامل